Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика
Вариант № 52418
1.  
i

Тре­уголь­ник ABC  — рав­но­бед­рен­ный с ос­но­ва­ни­ем AB. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла BAC тре­уголь­ни­ка ABC.

1) 62°
2) 68°
3) 34°
4) 64°
5) 28°
2.  
i

Если впи­сан­ный угол KML изоб­ра­жен­ный на ри­сун­ке, равен 38°, то впи­сан­ный угол KNL равен:

1) 46°
2) 38°
3) 19°
4) 52°
5) 76°
3.  
i

Ис­поль­зуя ри­су­нок, опре­де­ли­те вер­ное утвер­жде­ние и ука­жи­те его номер.

1)  минус 3k мень­ше минус 3t
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: t конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: k конец дроби
3) 3k боль­ше 3t
4)  дробь: чис­ли­тель: k, зна­ме­на­тель: минус 3 конец дроби боль­ше дробь: чис­ли­тель: t, зна­ме­на­тель: минус 3 конец дроби
5) k боль­ше t
4.  
i

Опре­де­ли­те, на сколь­ко не­из­вест­ное сла­га­е­мое мень­ше суммы, если из­вест­но, что x + 20  =  80.

1) 80
2) 20
3) 60
4) 40
5) 100
1)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 7 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
3) 9
4) 9,7
5) 3,41
6.  
i

Ве­ли­чи­ны a и b яв­ля­ют­ся прямо про­пор­ци­о­наль­ны­ми. Ис­поль­зуя дан­ные таб­ли­цы, най­ди­те не­из­вест­ное зна­че­ние ве­ли­чи­ны a.

 

a1,9
b1087,6
1) 32
2) 27
3) 22
4) 14
5) 56
7.  
i

Сумма кор­ней (или ко­рень, если он один) урав­не­ния  левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та =0 равна:

1) −1
2) 3
3) −2
4) 1
5) −3
8.  
i

Среди дан­ных утвер­жде­ний ука­жи­те номер вер­но­го.

1) Число 451 крат­но числу 5.
2) Число 9 крат­но числу 35.
3) Число 2 крат­но числу 14.
4) Число 116 крат­но числу 1.
5) Число 43 крат­но числу 0.
9.  
i

Зна­че­ние вы­ра­же­ния  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 4 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 3 пра­вая круг­лая скоб­ка в сте­пе­ни 4 конец ар­гу­мен­та равно:

1) 2 минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2) 3 минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 2
4) 6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5) 12 минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
10.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка 2x минус 4,6 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та плюс 4,6 при −1 < x < 1 имеет вид:

1) 9,2 − 2x
2) −2x − 9
3) 2x + 9,2
4) 2x
5) −2x
11.  
i

На клет­ча­той бу­ма­ге с клет­ка­ми раз­ме­ром 1 см х 1 см изоб­ра­же­на фи­гу­ра. Из­вест­но, что пло­щадь этой фи­гу­ры со­став­ля­ет 28% пло­ща­ди не­ко­то­рой тра­пе­ции. Най­ди­те пло­щадь тра­пе­ции в квад­рат­ных сан­ти­мет­рах.

1) 504 см2
2)  целая часть: 64, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 7 см2
3) 35 см2
4)  целая часть: 72, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 4 см2
5)  целая часть: 155, дроб­ная часть: чис­ли­тель: 5, зна­ме­на­тель: 9 см2

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: x в квад­ра­те минус 22x плюс 121, зна­ме­на­тель: x в квад­ра­те минус 11x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 121, зна­ме­на­тель: x в кубе конец дроби .

1)  дробь: чис­ли­тель: x, зна­ме­на­тель: x плюс 11 конец дроби
2)  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 11 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
3)  дробь: чис­ли­тель: x минус 11, зна­ме­на­тель: x плюс 11 конец дроби
4)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x минус 11 конец дроби
5)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x плюс 11 конец дроби
13.  
i

Па­рал­лель­но сто­ро­не тре­уголь­ни­ка, рав­ной 5, про­ве­де­на пря­мая. Длина от­рез­ка этой пря­мой, за­клю­чен­но­го между сто­ро­на­ми тре­уголь­ни­ка, равна 2. Най­ди­те от­но­ше­ние пло­ща­ди по­лу­чен­ной тра­пе­ции к пло­ща­ди ис­ход­но­го тре­уголь­ни­ка.

1)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби
2) 0,6
3)  дробь: чис­ли­тель: 21, зна­ме­на­тель: 25 конец дроби
4)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 25 конец дроби
5)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 25 конец дроби
14.  
i

В бо­та­ни­че­ском саду раз­би­ли клум­бу тре­уголь­ной формы. Длина пер­вой сто­ро­ны клум­бы равна 4 м, длина вто­рой сто­ро­ны в 2,5 раза боль­ше длины пер­вой, а длина тре­тьей со­став­ля­ет не мень­ше 120% от длины вто­рой сто­ро­ны. Ка­ко­му усло­вию дол­жен удо­вле­тво­рять пе­ри­метр Р (в мет­рах) этой клум­бы.

1) 26 мень­ше Р мень­ше или равно 28
2) P\le28
3) 26 мень­ше или равно P мень­ше 28
4) P боль­ше 26
5) 26 мень­ше или равно P \le28
15.  
i

Ука­жи­те но­ме­ра пар не­ра­венств, ко­то­рые яв­ля­ют­ся рав­но­силь­ны­ми.

1) (x − 14)2 < 0 и x − x2 − 14 ≥ 0;

2) x2 − 169 > 0 и |x| < 13;

3) x2 + x − 30 < 0 и (x − 5)(x + 6) < 0;

4) x2 ≥ 31 и x боль­ше или равно ко­рень из: на­ча­ло ар­гу­мен­та: 31 конец ар­гу­мен­та ;

5) 5x2 < 9x и 5x < 9.

1) 3, 4
2) 1, 3
3) 2, 5
4) 4, 5
5) 1, 2
16.  
i

На одной сто­ро­не пря­мо­го угла О от­ме­че­ны две точки А и В так, что ОА  =  1,7, OB  =  а, ОА < ОВ. Со­ставь­те фор­му­лу, по ко­то­рой можно вы­чис­лить ра­ди­ус r окруж­но­сти, про­хо­дя­щей через точки А, В и ка­са­ю­щей­ся дру­гой сто­ро­ны угла.

1) r= дробь: чис­ли­тель: a плюс 1,7, зна­ме­на­тель: 2 конец дроби
2) r= дробь: чис­ли­тель: a минус 1,7, зна­ме­на­тель: 2 конец дроби
3) r=a плюс 1,7
4) r= дробь: чис­ли­тель: a плюс 3,4, зна­ме­на­тель: 2 конец дроби
5) r=2a минус 1,7
17.  
i

Через точку A вы­со­ты SO ко­ну­са про­ве­де­на плос­кость, па­рал­лель­ная ос­но­ва­нию. Опре­де­ли­те, во сколь­ко раз пло­щадь ос­но­ва­ния ко­ну­са боль­ше пло­ща­ди по­лу­чен­но­го се­че­ния, если SA : AO = 2 : 3.

1)  целая часть: 6, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
2)  целая часть: 7, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
3)  целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
4)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
5)  целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
18.  
i

Вы­со­ты ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка ABC (AB  =  BC) пе­ре­се­ка­ют­ся в точке O. Если вы­со­та AD  =  15 и AO  =  10, то длина сто­ро­ны AC равна:

1) 17
2) 7 ко­рень из 6
3) 5 ко­рень из 3
4) 10 ко­рень из 3
5) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та

Вы­бе­ри­те все вер­ные утвер­жде­ния, яв­ля­ю­щи­е­ся свой­ства­ми не­чет­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­делённой на x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; бес­ко­неч­ность пра­вая круг­лая скоб­ка и за­дан­ной фор­му­лой f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те плюс 10x при x\leqslant0.

1.  Функ­ция имеет три нуля.

2.  Функ­ция убы­ва­ет на про­ме­жут­ке [6; 9].

3.  Мак­си­мум функ­ции равен 25.

4.  Ми­ни­маль­ное зна­че­ние функ­ции равно -25.

5.  f левая круг­лая скоб­ка f левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка плюс 1 пра­вая круг­лая скоб­ка =0.

6.  Функ­ция при­ни­ма­ет от­ри­ца­тель­ные зна­че­ния при x при­над­ле­жит левая квад­рат­ная скоб­ка 10; 14 пра­вая квад­рат­ная скоб­ка .

7.  Гра­фик функ­ции сим­мет­ри­чен от­но­си­тель­но оси абс­цисс.

 

Ответ за­пи­ши­те в виде по­сле­до­ва­тель­но­сти цифр в по­ряд­ке воз­рас­та­ния. На­при­мер: 123.

20.  
i

Най­ди­те ко­ли­че­ство всех целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: 64x минус x в кубе , зна­ме­на­тель: 5x конец дроби боль­ше 0.

21.  
i

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 x пра­вая круг­лая скоб­ка =108 минус x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 6 пра­вая круг­лая скоб­ка равна ...

22.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 9x плюс 8 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 23 минус 11x конец ар­гу­мен­та =0.

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 4 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 128=3 в сте­пе­ни левая круг­лая скоб­ка 1 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .

24.  
i

ABCD  — пря­мо­уголь­ник. Точка N  — се­ре­ди­на сто­ро­ны ВС. От­ре­зок DN пе­ре­се­ка­ет диа­го­наль АС в точке О (см. рис.). Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка ONBA, если пло­щадь пря­мо­уголь­ни­ка ABCD равна 492.

25.  
i

Четырёхуголь­ник ABCD впи­сан в окруж­ность. Если \angle BAC=40 гра­ду­сов, \angle ABD = 75 гра­ду­сов, то гра­дус­ная мера между пря­мы­ми AB и CD равна ...

26.  
i

В ос­но­ва­нии пи­ра­ми­ды лежит пря­мо­уголь­ный тре­уголь­ник, длина ги­по­те­ну­зы ко­то­ро­го равна 6, ост­рый угол равен 30°. Каж­дая бо­ко­вая грань пи­ра­ми­ды на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом, рав­ным  арк­ко­си­нус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 10 конец дроби . Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды.

27.  
i

Най­ди­те сумму целых зна­че­ний x, при­над­ле­жа­щих об­ла­сти опре­де­ле­ния функ­ции

y= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 12 минус x минус x в квад­ра­те пра­вая круг­лая скоб­ка .

28.  
i

Най­ди­те сумму всех целых чисел из об­ла­сти опре­де­ле­ния функ­ции y= дробь: чис­ли­тель: ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 56 плюс 9x минус 2x в квад­ра­те конец ар­гу­мен­та , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та пра­вая круг­лая скоб­ка x минус 3 конец дроби .

29.  
i

Пусть A= левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 15 плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка 2 минус 2} пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 7,5 пра­вая круг­лая скоб­ка 15 умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка 15 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,5 пра­вая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 4 в квад­ра­те 15.

Най­ди­те зна­че­ние вы­ра­же­ния 2A.

30.  
i

Пря­мо­уголь­ный тре­уголь­ник, длина ги­по­те­ну­зы ко­то­ро­го равна 10, вы­со­та, про­ве­ден­ная к ней, равна 3, вра­ща­ет­ся во­круг пря­мой, пер­пен­ди­ку­ляр­ной ги­по­те­ну­зе и про­хо­дя­щей в плос­ко­сти тре­уголь­ни­ка через вер­ши­ну боль­ше­го остро­го угла. Най­ди­те объем V тела вра­ще­ния и в ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: V, зна­ме­на­тель: Пи конец дроби .

31.  
i

Петя за­пи­сал на доске два раз­лич­ных на­ту­раль­ных числа. Затем он их сло­жил, пе­ре­мно­жил, вычел из боль­ше­го за­пи­сан­но­го числа мень­шее и раз­де­лил боль­шее на мень­шее. Сло­жив че­ты­ре по­лу­чен­ных ре­зуль­та­та, Петя по­лу­чил число 1521. Най­ди­те все такие пары на­ту­раль­ных чисел. В ответ за­пи­ши­те их сумму.

32.  
i

Ос­но­ва­ни­ем пи­ра­ми­ды SABCD яв­ля­ет­ся вы­пук­лый че­ты­рех­уголь­ник ABCD, диа­го­на­ли АС и BD ко­то­ро­го пер­пен­ди­ку­ляр­ны и пе­ре­се­ка­ют­ся в точке O, АО  =  9, ОС  =  16, ВО  =  OD  =  12. Вер­ши­на S пи­ра­ми­ды SABCD уда­ле­на на рас­сто­я­ние  дробь: чис­ли­тель: 61, зна­ме­на­тель: 7 конец дроби от каж­дой из пря­мых AB, BC, СD и AD. Через се­ре­ди­ну вы­со­ты пи­ра­ми­ды SABCD па­рал­лель­но ее ос­но­ва­нию про­ве­де­на се­ку­щая плос­кость, ко­то­рая делит пи­ра­ми­ду на две части. Най­ди­те зна­че­ние вы­ра­же­ния 10 · V, где V  — объем боль­шей из ча­стей.